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It is shown that, in the same way as the atomic charge is an invariant built 
from the first-order density matrix, the closed-shell generalized bond index 
is an invariant associated with the second-order reduced density matrix. The 
active charge of an atom (sum of bond indices) is shown to be the sum of 
all density-density correlation functions between it and the other atoms in 
the molecule;  similarly, the self-charge is the fluctuation of  its total charge. 
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Biorthogonal (or dual) sets have been introduced in very different frameworks 
in order to avoid the non-orthogonality problem [4, 9, 12]. Mayer [9] has shown 
that, when used together with the second quantization formalism, they permit a 
better understanding of the different terms arising from the partition of the LCAO 
Hamiltonian. Here, we relate part  of this approach to the bond indices which 
are the generalization of the Wiberg ones to non-orthogonal bases [6, 7 and refs. 
therein]; we show that their mere introduction amounts to referring to the 
second-order density matrix. 

It is said [3] that "Lowdin showed that the orthogonalizing matrix can be chosen 
to be S-1/2. '' Yet, it is much more than a possible choice, for 

det Is-'/=l = J (1) 
where J is the Jacobian of  the transformation from "cartesian" to "curvilinear" 
coordinates; that is, f rom orthogonal to non-orthogonal wavefunctions. The 
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overlap matrix S is the covariant metric tensor of order two. The contravariant 
tensor S "b (a, b, atomic orbitals) already appears in the classical Chirgwin- 
Coulson work [1] and it is used to build a mixed Hamiltonian H b. 

The metric tensor is built from the scalar products of a covariant basis {~ba}: 

sob = (~a, ~b) (2) 

The contravariant basis associated to it, {q~a}, is given by the tensor contraction 

~ = 2 s~%b (3) 
b 

Hence the Chirgwin-Coulson H b becomes simply 

H~ = (6  b, Hba)  (4) 

and 

(4 ~ ~bb) = 3~ = S~ (5) 

The two (covariant and contravariant) sets, taken together, therefore lead to a 
more compact formulation. The creation and annihilation operators correspond- 
ing to the q~'s are 4~ + and qS-. 

It is almost universally admitted that a chemical bond arises from a concentration 
of electron density in the bond region, thereby the first-order density matrix Pl 
or similar related quantities such as Mulliken's populations are used for describing 
bonds [5]. However, the pairwise character of the chemical bond is not fully 
reflected by pl; it seems most natural to associate a bond to the second-order 
density matrix P2. 

The first-order reduced density matrix represents a mixed second order tensor [7] ; 
the second-order matrix is a fourth rank tensor. Let us show that this fourth-rank 
tensor is related to the one which we introduced in order to obtain the appropriate 
generalized bond indices Ias under contraction [7]. 

If x ~ are the contravariant and xi~ the covariant coefficients of the a orbital 
(centered on atom A) in the ith wavefunction of a doubly occupied level (we 
shall restrict ourselves to a closed-shell case), the idempotent first-order density 
matrix 2H~ is 

2II] = 2 5~ x,~x 'c (6) 
i 

which is related to the annihilation-creation operators by [9]: 

( 6+6  -c) = 2H~, (7) 

where c may belong to A or to another atom. By b we shall denote an orbital 
intended to belong to atom B r A. 

We thus define a bond index IaB and an atomic charge qa [6, 7]: 

IAn = 4  E 1-[b 1-[; (8) 
a ~ A  
b E B  
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qA=(1)IaA+(�89 Y Ia~ (9) 
B # A  

where (�89 is the self-charge and the second term the active charge distributed 
along formal and effective bonds [6, 14]. This definition of qa coincides with 
Mulliken's gross atomic population, with a very different partition of self-charge 
and active charge. Thus IAB differs appreciably from Mulliken's overlap 
population [8]. On the other hand, qA is still 

q a = ( q a ) =  ( • r 1 6 2  (10) 
a c A  

i.e. the mean value of the actual LCAO atomic charge operator qa [9, 10]. 

An atomic orbital charge defined as [7] 

q ~ = 2 E  r t ;  n ~ = z n ~  (11) 
r 

is not an invariant. The only scalar associated with an atom is the atomic 
population 

qa = E q~ (12) 
a ~ A  

In orthogonal bases, the second-order density matrix P2 of "elements" dijkt is 
written, in terms of creation and annihilation operators X ~, as [2]: 

d ~2k, 0-- (X +X+X kX 7) (13) 

An extension of this to the dual basis can be 

d~{ = (6~6~-r  -i) (14) 

where [9]: 

( r162162162 = 4 (lI f H~, - HfI][ )  (15) 

The factorization of the second-order density (15) as products of first-order ones 
is characteristic of the one-determinant approximation [11]. Equations (14) and 
(15) satisfy the conditions expected from the antisymmetry of the second-order 
density matrix: 

= - - d g h  = --dhg (16) 

Let us look for an invariant built from the second-order density matrix. As a 
bond involves one pair of atoms, we shall ask (15) to contract as 

Z d~] (17) 
a 6 A  
b o B  

Due to the anticommutation relations of [9], this is easily shown to be 

ab + + - a  - b  + - a  + - b  dba= Y (r162 r162 ) 
a e A  a e A  a e A  
b ~ B  b ~ B  b e B  

= ( , L ~ )  (18) 
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which in turn, taking into account (8), (11), (12) and (15), is equal to 

~. d~ b = qAqs -- lAB = (qAqB) (19) 
acA 
bEB 

If this is added over all atoms A and B it gives the number of electron pairs 

1~  ~ qAq~ _ �89 v~ ~, IAB = ( S 2 -  N ) / 2  = N (  N -  1)/2 (20) 
A B  A S  

as it should. Thus, we have 

IAB = qAqB-- ~ d~ b (21) 
a~A 
boB 

which shows that the generalized bond index between atoms A and B arises from 
the difference between the product of the atomic charges in A and B, and the 
contraction of d~Yh. This is obviously also valid for orthogonal bases, i.e. for the 
Wiberg index. 

The atomic charge is the atomic invariant built from the first-order density matrix. 
We have just shown that, in a similar way, the generalized bond index is an 
invariant associated to the two-electron density matrix. 

Equation (19) permits a direct calculation of the mean value of the operator 
t~A qB, i.e. the probability of atom A having the charge qA and atom B the charge 
qB. Our d~ b has a form closely similar to that given by Ruedenberg to the pair 
density for orthogonal bases [13]. He calls "exchange part of the pair density" 
or "correlative pair density between different electrons" the quantity which, when 
contracted in a and b, we have defined as bond index. 

Let us briefly delay on this statistical side of the bond index. We have just seen 
that 

( qAqB) -- ( qA)( qB) = --lAB" (22) 

Now, the left-hand member is easily shown to be the density-density correlation 
function 

((qA -- (qA)) (qs - (qB))) (23) 

Hence, the bond index measures the correlation between the fluctuations o f  qA and 
qB f rom their average values: it vanishes when the motions of the electrons in A 
are independent from the motions of the electrons in B. The active charge of an 

1 atom, (~) ~ , B # A  IAB, is then half the sum of all correlations between it and the 
other atoms in the molecule. 

If in Eq. (22) we put A = B, we obtain 

(~)- ~ A )  2 = - I ~  

that is, the self-charge o f  an atom is half  the fluctuation o f  its gross charge. 

(24) 
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